
Object Oriented Programming: Objects are instances of a particular class or subclass with the

class's. The classes can have methods or procedures and data variables. An object is what

actually runs in the computer.

Polymorphism: Polymorphism is when multiple subclasses of the same type (Animal) can call

the same method such as make sound. The make sound method is inherited from the super

class as part of the instance of that specific object. Polymorphism in this example is using the

same method for different types of objects (sub-classes/different animals).

Inheritance is where a subclass (or object) inherits a method from a super class. Objects inherit

methods, procedures, and data variables from classes.

Encapsulation: In Animal, all the data is encapsulated (hidden/protected/shelled) in one class

such as sound, type, height, color, etc...

Abstraction: When an operation (ie: sleeping) in super class Animal is not needed by a subclass,

it is an abstraction. When it is needed, it is concrete.

Class: In Object Oriented Programming a class is a program-code-template for

creating/instantiating objects, providing initial values for state member variables and

implementations of functions and methods.

String Functions:

C#: Constructor -
public ActionResult Name (string firstName, string lastName)
{
string fullName = ("My full name is: " +(firstName + lastName));
return PartialView (fullName);
}
C#: View-
@Model

int x = 11;

string y = "How old are you? ";

static void main()
{
return (x + y);
}
}

Java and C++ Programming Tutorials.
Java Tutorial 5: Inheritance and Polymorphism

Java Tutorial

Inheritance and polymorphism: two big words to strike fear into the heart of any new Java

programmer. However, the concepts that they refer to are not that complex.

Inheritance in Java

Let's take a look first at inheritance. Inheritance allows you to create child classes of existing classes.

Why would you want to do such a thing? Well let's say you've got a class called Robot. Robot contains

nothing other than some basic methods needed by all Robots. For example:

public class Robot {

 public void start() {

 System.out.println("Robot started.");

 }

 public void work() {

 System.out.println("Robot working.");

 }

 public void stop() {

 System.out.println("Robot stopped.");

 }

}

As you can see, the Robot class merely defines start(), work() and stop() methods, and each method

merely prints out what it's supposed to do.

We'll create a class with a main method to run Robot.

public class Application {

 public static void main(String[] args) {

 Robot robot = new Robot();

 robot.start();

 robot.work();

 robot.stop(); }}

https://www.caveofprogramming.com/categories/javatutorial/index.html

Running this program produces the following output:

Robot started.

Robot working.

Robot stopped.

All very well. But what if we want to create particular types of Robots that "inherit" all the functionality

of Robot, but also add new functionality?

For instance, let's create a WasteDisposalRobot:

public class WasteDisposalRobot extends Robot {

 public void findWaste() {

 System.out.println("Finding waste");

 }

}

Using the keyword extends, we've create a WasteDisposalRobot that can do everything that Robot does,

and also adds a findWaste() method.

We can use it as follows:

WasteDisposalRobot robot = new WasteDisposalRobot();

robot.start();

robot.findWaste();

robot.work();

robot.stop();

Robot started.

Finding waste

Robot working.

Robot stopped.

What we have here is inheritance at work. The WasteDisposalRobot is a subclass or child class of the

Robot class; the Robot class is its superclass or parent class.

WasteDispoalRobot can do everything that Robot can do, and we can add new methods (and data) to it

also.

Method Overriding

What if we've created a new subclass of some superclass, but we don't like one or more of the methods

in the superclass? We'd like to change it to do something else. We can do that simply by defining the

method again in the child class.

In the following code, we've overridden the work() method in the Robot parent class so that it does

something different in the WasteDisposalRobot child class.

public class WasteDisposalRobot extends Robot {

 public void findWaste() {

 System.out.println("Finding waste");

 }

 @Override

 public void work() {

 System.out.println("Disposing waste!");

 }

}

Robot started.

Finding waste

Disposing waste!

Robot stopped.

Note the @Override directive just before the overridden method. This is not obligatory, but you should

always use it. It tells the Java compiler that you intend to override a method in the parent class. If you

misspell the method name and try to override a method that does not exist, the compiler will warn you

by throwing an error.

Instance Variable Inheritance

It might occur to you to wonder what happens with instance variables. If the Robot superclass has some

instance variables, do the child classes also have access to these variables? This depends on whether

you define the instance variables in the parent class using the public, private or protected access

specifiers, or with none at all. We'll look at this in more detail later, but for now let's just say that as long

as instance variables are not private, they can be accessed by subclasses.

Let's see an example. Here I've placed all relevant code in one file to make it easier to read.

class Fruit {

 String name;

 Fruit() {

 name = "Fruit";

 }

 public String getName() {

 return name;

 }

}

class Banana extends Fruit {

 Banana() {

 name = "Banana";

 }

}

public class Application {

 public static void main(String[] args) {

 Fruit fruit = new Fruit();

 Banana banana = new Banana();

 System.out.println(fruit.getName());

 System.out.println(banana.getName());

 }

}

The constructors of both classes set the name instance variable. The Banana class extends the Fruit class

(i.e. inherits from it); its constructor also has access to the name instance variable, which it sets. Then

when name is retrieved from either class using the getName() method, an appropriate name is returned

and displayed.

Fruit

Banana

Constructor Inheritance

Constructors are inherited like other methods, and in fact when you construct a child object, the default

constructor of its parent is called automatically first.

class Fruit {

 Fruit() {

 System.out.println("Fruit constructed");

 }

}

class Banana extends Fruit {

 Banana() {

 System.out.println("Banana constructed");

 }

}

public class Application {

 public static void main(String[] args) {

 Banana banana = new Banana();

 }

}

Fruit constructed

Banana constructed

If there is no default constructor in the parent class, you must define a constructor explicitly in the child

class. If you want, you can then call the appropriate constructor in the parent class using the super

keyword.

class Fruit {

 Fruit(String name) {

 System.out.println("Fruit constructed with name: " + name);

 }

}

class Banana extends Fruit {

 Banana() {

 super("Banana");

 }

}

public class Application {

 public static void main(String[] args) {

 Banana banana = new Banana();

 }

}

Fruit constructed with name: Banana

Polymorphism in Java

Polymorphism: big word, simple concept. Its literal meaning is "many shapes". But that tells you

nothing. Polymorphism just means that, basically, once you've got a child class, you can use objects of

that child class wherever you'd use objects of the parent class. Java will automatically invoke the right

methods.

For instance, even if we have a variable with the type of a parent class, we can assign it to a child class

and we can call overridden methods in the child class using that variable.

Let's see an example.

class Fruit {

 public void show() {

 System.out.println("Fruit");

 }

}

class Banana extends Fruit {

 @Override

 public void show() {

 System.out.println("Banana");

 }

 public void makeBananaTree() {

 System.out.println("Making a tree");

 }

}

public class Application {

 public static void main(String[] args) {

 Fruit banana = new Banana();

 banana.show();

 // The following WILL NOT work;

 // Variables of type Fruit know only

 // about Fruit methods.

 // banana.makeBananaTree();

 }

}

Banana

Of course, you can't assign a Banana to a Fruit variable and then use it to call methods that belong only

to Banana and not to Fruit. Fruit only knows about Fruit methods. A variable of the type of a particular

class knows only about methods defined in that particular class and its superclasses. It doesn't know

about methods defined in subclasses, even though you can assign objects of subclass types to the

variable (Banana objects to Fruit variables, as in this example) and the overridden methods will be

correctly called.

More Stuff...

Next: Java Tutorial 6: Useful Standard Methods, Access Modifiers and Abstract Classes

Previous: Java Tutorial 4: Interfaces, and a Basic Swing App

Click here to see more in "Java Tutorial"

Java Collections Interview Questions and Answers

1. How to filter a Java collection?

The best way to filter a Java collection is to use Java 8. Java streams and lambdas can be

used to filter a collection as below,

List<Person> passedStudents = students.stream()

 .filter(p -> p.getMark() > 50).collect(Collectors.toList());

https://www.caveofprogramming.com/javatutorial/java-tutorial-6-useful-standard-methods-access-modifiers-and-abstract-classes.html
https://www.caveofprogramming.com/javatutorial/java-tutorial-4-interfaces-and-a-basic-swing-app.html
https://www.caveofprogramming.com/categories/javatutorial/index.html
http://javapapers.com/java/java-stream-api/

If for some reason you are not in a position to use Java 8 or the interviewer insists on pre

Java 8 solution, following is the best way to filter a Java collection.

2. How to Sort a Java Collection?

Use a Comparator to sort a Java Collection.

List<Animal> animals = new ArrayList<Animal>();

Comparator<Animal> comparator = new Comparator<Animal>() {

 public int compare(Animal c1, Animal c2) {

 //sort logic here

 return c2.getHeight() - c1.getHeight();

 }

};

Collections.sort(animals, comparator);

If Animal implements Comparable, then following is just enough.

Collections.sort(animals);

3. Best way to convert a List to a Set.

Instantiate Set using the HashSet.

Set<Animal> animalSet = new HashSet<Animal>(animalList);

4. When to use LinkedList over ArrayList?

Java’s LinkedList implementation is a doubly linked list. ArrayList is a dynamically

resizing array implementation. So to compare between LinkedList and ArrayList is

almost similar to comparing a doubly linked list and a dynamically resizing array.

LinkedList is convenient for back and forth traversal sequentially, but random access to

an element is proportionally costlier to the size of the LinkedList. At the same time,

ArrayList is best suited for random access using a position.

LinkedList is best for inserting and deleting an element at any place of the LinkedList.

An ArrayList is not suited for inserting or deleting elements in the mid of the ArrayList.

Since everytime a new element is inserted, all the elements should be shifted down and

dynamic resizing should be done.

With respect to memory usage of LinkedList and ArrayList, LinkedList collection uses

more memory as it needs to keep pointers to the adjacent elements. This overhead is not

present for the ArrayList, just the memory required for the data is sufficient. Consider

these factors and decide between LinkedList or ArrayList depending on the use case.

5. Difference between HashMap and Hashtable.
o HashMap is not synchronized but Hashtable is synchronized.

o HashMap allows null as key and value. Since the key is unique, only one null is

allowed as key. Hashtable does not allows null in key or value.

o LinkedHashMap extends HashMap and so can be converted. It helps to have a

fixed iteration order. It is not possible with Hashtable.

o In essense, there is almost no reason to use a Java Hashtable.

o

6. Explain Java hashCode() and equals() method.

equals() method is used to determine the equality of two Java objects. When we have a

custom class we need to override the equals() method and provide an implementation so

that it can be used to find the equality between two instance of it. By Java specification

there is a contract between equals() and hashCode(). It says,

"if two objects are equal, that is obj1.equals(obj2) is true then, obj1.hashCode() and

obj2.hashCode() must return same integer"

Whenever we choose to override equals(), then we must override the hashCode() method.

hashCode() is used to calculate the position bucket and keys.

7. What is Java Priority Queue?

Java PriorityQueue is a data structure that is part of Java collections framework. It is an

implementation of a Queue wherein the order of elements will be decided based on

priority of each elements. A comparator can be provided in the constructor when a

PriorityQueue is instantiated. That comparator will decide the sort order of elements in

the PriorityQueue collection instance.

8. Difference between ArrayList and Vector.

We have beaten this enough in a old article difference between Vector and ArrayList in

Java.

o Vector is synchronized and ArrayList is not.

o Vector doubles its internal size when its increased. But, ArrayList increases by

half of its size when its increased.

o ArrayList gives better performance over Vector as its not synchronized.

o ArrayList’s Iterators are fail-fast but Vector’s Enumeration is not fail-fast.

o ArrayList was introduced in Java 1.2 and Vector even before that. But initially

Vector was not part of Java collections framework and later made part of

collections framework.

o As of now, there is no need to use Vector and it can be considered legacy and to

be deprecated. If you need synchronized collection an ArrayList can be

synchronized and used.

9. What are Java Concurrent Collection Classes?

http://javapapers.com/core-java/java-hashtable/
http://javapapers.com/core-java/hashcode-and-equals-methods-override/
http://javapapers.com/java/java-priorityqueue/
http://javapapers.com/core-java/java-collection/difference-between-vector-and-arraylist-in-java/
http://javapapers.com/core-java/java-collection/difference-between-vector-and-arraylist-in-java/

Concurrent Collections were introduced in Java 5 along with annotations and generics.

These classes are in java.util.concurrent package and they help solve common

concurrency problems. They are efficient and helps us to reduce common boilerplate

concurrency code. Important concurrent collection classes are BlockingQueue,

ConcurrentMap, ConcurrentNavigableMap and ExecutorService.

10. Explain about Comparable and Comparator

A class can implement the Comparable interface to define the natural ordering of the

objects. If you take a list of Strings, generally it is ordered by alphabetical comparisons.

So when a String class is created, it can be made to implement Comparable interface and

override the compareTo method to provide the comparison definition. We can use them

as,

str1.compareTo(str2);

Now, what will you do if you want to compare two strings based on it length. We go for

the Comparator. We create a class and let it implement the Comparator interface and

override compare method. We can use them as,

Collections.sort(listOfStrings, comparatorObj);

The natural ordering is up to the person designing the classes. Comparator can be used in

that scenario also and it can be used when we need multiple sorting options. Imagine a

situation where a class is already available and we cannot modify it. In that case also,

Comparator is the choice.

Java Collections Interview Questions and Answers

1. How Java HashMap works?

HashMap is a key-value pair data structure. Each key will have a corresponding value and

the key is the identifier for that value.

Internally, these key-value pairs are stored in logical blocks (buckets). When a pair is put

in a HashMap, its key is used to compute hash code and that hash code identifies a bucket.

Imagine it as an array index or a logical address or a door number. The key-value pair is

stored at the bucket where the hash code points to. A bucket can have more than one key-

value pairs stored in it.

When a value is looked upon using its key, first the hashcode is computed and the

pointing bucket is reached. Then if that bucket has multiple pairs, then each of the ‘key’s

are compared using the equals method to identify the matching pair.

Refer this tutorial to know about what is hashcode and how it works? To know about

buckets and hashing refer Java Hashtable tutorial.

http://javapapers.com/core-java/java-history/
http://javapapers.com/core-java/hashcode-and-equals-methods-override/
http://javapapers.com/core-java/java-hashtable/

2. What are fail-fast and fail-safe Iterators?

fail-fast Java iterators may throw ConcurrentModifcationException if the underlying

collection is modified during an iteration is in progress. fail-safe iterators will not throw

any exception as the iteration happens on a clone of the instance. fail fast and fail safe are

paradigms that define how a system react when it encounters failure condition. Example

for fail fast iterator is ArrayList and for fail safe iterator is ConcurrentHashMap.

3. What is BlockingQueue in Java?

Java BlockingQueue is a concurrent collection that is part of the util package.

BlockingQueue is a type of queue which supports operations that wait for an element to

become available when retrieving from it and similarly wait for a space to become

available when storing elements in it. This collection is best used in a producer consumer

scenario.

4. When do you use ConcurrentHashMap?

In the above interview question number 2 we saw ConcurrentHashMap as an example for

fail safe iterator. It allows complete concurrency for retrievals and updates. When there is

a scenario where a high number of concurrent updates are expected then

ConcurrentHashMap can be used. This is very similar to a Hashtable but does not lock

the entire table to provide concurrency and so it is better performance point of view.

When there are high number of updates and less number of read concurrently, then

ConcurrentHashMap should be used.

5. Which List implementation provides fastest insertion?

This is between LinkedList and ArrayList. These two are different variants of List

implementations. LinkedList is a doubly linked list datastructure and ArrayList is

dynamically resizing array. Performance of these two collections with respect to insert is

O(n) for LinkedList and O(n-index) for ArrayList.

In LinkedList the cost is always a constant factor, it is about allocating a node and linking

with adjacent elements. In ArrayList the cost varies based on whether the insertion is at

beginning or at the end of the list. Other elements already existing in the ArrayList should

be adjusted for positions according to the insertion.

If the insertion is at the end of the List then ArrayList is faster than LinkedList. If the

insertion is at the beginning and also if the list is longer then LinkedList wins.

6. Difference between Iterator and ListIterator

http://javapapers.com/core-java/java-iterator/
http://javapapers.com/core-java/fail-fast-vs-fail-safe/
http://javapapers.com/java/java-blockingqueue/

ListIterator is used to traverse List type of collections exclusively where in Iterator

can be used traverse any type of collections. ListIterator has got additional features over

an Iterator and they are,

o ListIterator can traverse a List backwards where in Iterator cannot do.
o Using ListIterator an element can be added at any given point.
o Get the current index at any traversal moment.
o Replace an element at the traversal point.

7. What is CopyOnWriteArrayList, how it is different than ArrayList?

CopyOnWriteArrayList is a thread-safe counterpart of ArrayList. All mutable operations

like add and set are implement by using a copy of the underlying array. Write operation is

slower when compared the ArrayList as it takes a snapshot of the instance and does the

write. This is useful when the traversal of the collection need not be synchronized during

traversal with the original instance and the traversal is larger in count than the updates.

This provides a fail safe iterator as it does not throw exception when the underlying

collection is modified. At the same time the iterator will not reflect the modifications

done to the collection, it just shows the snapshot of state taken at the moment when the

iterator is created.

8. Difference between Iterator and Enumeration

If the interviewer asks this question in a Java interview any more, consider him to be

legacy. Mainly Iterator is different from Enumeration in two ways,

o Iterator allows the removal of elements from the underlying collection.
o Method names are standardized in Iterator.

Iterator is brought in as a replacement for Enumeration in Java 1.2 release. Use

Iterator everywhere instead of Enumeration

9. How a HashMap can be synchronized?

There are two options when we need a synchronized HashMap.

o Use Collections.synchronizedMap(..) to synchronize the HashMap.
o Use ConcurrentHashMap.

The preferred choice between these two options is to use the ConcurrentHashMap. That’s

because we need not lock the whole object and ConcurrentHashMap partitions the map

and obtains lock as necessary. Read the interview question number 4 above. Need not

reinvent the wheel unless you are going to provide a different and greater implementation

than the ConcurrentHashMap.

10. Difference between IdentityHashMap and HashMap

http://javapapers.com/core-java/java-history/

IdentityHashMap is an implementation of Map interface. Unlike HashMap, this uses

reference equality. That means,

o in HashMap, two elements are equal if key1.equals(key2)
o iin IdentityHashMap, two elements are equal if key1 == key2

Map imposes a contract to honor, the implementations should use object equality. If

equals of method returns same value for two keys, then the hash code value should be

same.

o IdentityHashMap intentionally violates the contract and does reference equality.
o For hashing, the IdentityHashMap uses System.identityHashCode(object)

instead of hashCode() as done by HashMap.
o IdentityHashMap is relatively faster than HashMap for operations.
o Keys are mutable in IdentityHashMap but in HashMap keys are mutable.

